FROZEN IN TIME: CONTINUOUS MEASUREMENTS IN A DAM BREACH FLOW

Teresa Alvarez

Supervisors: Rui Ferreira (IST), Teresa Viseu (LNEC)

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

INTRODUCTION

PhD theme: Experimental investigation of embankment failure by overtopping

General objective:

To achieve a more accurate description of the hydraulic and geotechnical phenomena involved in the breach of overtopping embankments.

Influence of the dam elements:

- drainage system
- impervious core

Detailed characterization of the hydrodynamic field:

- in a selected instant
- 3D print of the rupture dam

INTRODUCTION

- Embankment dams and dikes often fail by overtopping
- This erosion process is a complex process, with a strong transient character
- The flow-dam interaction may generate the detachment of earth blocks
- Measurements in dam breach flows are not trivial and imaging based techniques are often required
- Due to the complexity of the flow nature, and its transient character it is often impossible to investigate in detail the different phenomena

METHODOLOGY

Run a large-scale dam beach experiment

Measure the 3D geometry with a Kinect system

Obtain a scaled model using a 3D printer

Use the printed model to perform detailed measurements

BREACHED DAM MODEL

THE LARGE-SCALE DAM BREACH EXPERIMENT

Experimental facility

- Laboratório Nacional de Engenharia Civil

Breaching dam

Dam cross section

Teresa Alvarez / Experimental Investigation of Embankment Failure by Overtopping

THE LARGE-SCALE DAM BREACH EXPERIMENT

Depth images acquisition with KINECT sensor

Creation of points clouds with the software CloudCompare

Teresa Alvarez / Experimental Investigation of Embankment Failure by Overtopping

THE 3D MODEL

Perspective of the point cloud

View of the printable 3D model

Printed model

EXPERIMENTAL SETUP

PARTICLE IMAGE VELOCIMETRY

Dantec's Particle Image Velocimetry (PIV) system

- Nikon 60 mm/f2.8 lens
- Resolution: 1600 × 1200 pixels

Seeding particles

TiO2 particles / 50 µm

Laser head

Power sorce

PARTICLE IMAGE VELOCIMETRY

- Spatial resolution: 0.6 to 1.5 mm
- 4500 images pairs
- 3 repetitions at each panel

 $\mathbf{V} = \frac{d\mathbf{r}}{dt} \qquad (1)$

where

- V is the velocity vector,
- r is the displacement vector of the correlation peak and dt is the time interval between two laser pulses.

VELOCITY MEASUREMENTS SCHEME

- Need to divide the region of interest (ROI) in the camera to distinguish the seeding particles
- ROI was divided in 15 sample regions
- Overlap of at least 10% of the image area

DATA PROCESSING

Image calibration

- Checkerboard with 2×2 mm squares
- Distortion in the images was negligible
- Application of a linear conversion algorithm

Mask application

- to restrict the analysis to the ROI, thus reducing the processing time; and
- to remove areas where the velocity measurements could not be trusted due to the excessive aeriation and turbulence

DATA PROCESSING

Assembly of mean velocity / Reynolds shear stresses

- Compute the mean velocity field for each of the 3 repetitions of the 4500 instant velocity fields
- Compute the ensemble average velocity field with the 3 data set for each sample region
- Interpolate the mean velocity from each sample region for a pre-established common grid
- Compute the average velocity using the data from different sample regions for the overlapped areas

EXPERIMENTAL RESULTS AND DISCUSSION

LONGITUDINAL SECTION

Mean velocity field

JET IMPACT AREA

Velocity and stream lines

Reynolds shear stresses

$$\tau_{Re} = -\rho \overline{u'w'}$$

were:

 τ_{Re} - Reynolds shear stresses

ρ - water density

- u' velocity fluctuations in x direction
- w' velocity fluctuations in z direction

CONCLUSIONS

- A printed half-model of a breached dam was used to model a transient flow as a stationary flow
- Perform long-duration measurements using PIV to determine the mean velocity field and the Reynolds stresses
- The division of the region of interest (ROI) in several panels allowed the complete description of the flow
- This approach allowed to identify a boundarylayer flow in the region over the breach and a vortex close to the bottom
- Due to the air-water emulsion at the jet impinging section, it was impossible to characterize the flow in this region
- These measurements will be complemented with measurements in a plane parallel to the bottom and in a plane perpendicular to the flow to better characterize the erosive process.

FUTURE DEVELOPMENTS

- Conclusion of the data treatment regarding the hydrodynamic field characterization
- Submission and publication of 3 journal papers:
 - Alvarez, T.; Mendes, S.; Aleixo, R.; Amaral, S.; Caldeira, L.; Viseu, T. and Ferreira, R.M.L. (2022) Breaching of Homogeneous Dams with Chimney Filters. Submission to *Water Resources Research*
 - Alvarez, T.; Aleixo, R.; Mendes, S.; Amaral, S.; Caldeira, L.; Viseu, T. and Ferreira, R.M.L. (2022) Failure of homogeneous and zoned dams subjected to overtopping. Timescales and fundamental morphological processes. Submission to *Water Research*
 - Alvarez, T.; Aleixo, R.; Viseu, T. and Ferreira, R.M.L. (2022) Hydrodynamics of overtopped breaching dams. Submission to *Environmental Fluid Mechanics*
- Delivery of the PhD thesis

THANK YOU!

U. PORTO